제조현장 AI 도입률 3.9% 그쳐…정보통신 분야 25.7%에 비해 낮아

News

제조현장 AI 도입률 3.9% 그쳐…정보통신 분야 25.7%에 비해 낮아

[지디넷코리아]

생성형 인공지능(AI)은 빠르게 확산하고 있지만 제조 현장의 AI 도입은 아직 부족한 상황이어서 산업 전반에 AI 도입을 가속해야 한다는 주장이 나왔다.

산업통상자원부가 17일 개최한 ‘산업 AI 전략(M.A.P·Manufacturing AI Policy) 세미나’에서 송단비 산업연구원 연구위원은 ‘산업 AI 기업 활용현황’ 조사 결과, 기업의 AI 활용비율은 2017년 1.4%에서 2023년 6.4%까지 증가했지만, 여전히 낮은 것으로 나타났다고 발표했다.

산업별 AI 도입률은 정보통신과 금융·보험은 25.7%와 15.3%지만 제조업은 3.9% 수준에 그친 것으로 나타났다.

이승렬 산업통상자원부 산업정책실장이 17일 대한상공회의소에서 열린 ‘산업 AI 전략(M.A.P·Manufacturing AI Policy) 세미나’에서 인사말을 하고 있다.

기업 규모별로는 250명 이상이 종사하는 기업의 경우 AI 도입률이 2017년 3.1%에서 2022년 9.3%로 상승했으나 50~250명이 종사하는 기업은 2017년 0.9%에서 2022년 3.1%로 늘어나는 데 그쳤다.

박일준 대한상의 부회장은 “AI 범위가 너무 넓어 모든 분야에서 잘하겠다고 하는 생각은 위험할 수 있다”며 “선택과 집중 전략이 필요한 상황에서 산업계는 산업 AI에 집중해야 한다”고 말했다. 박 부회장은 “제조분야 AI 주도권을 다른 국가에 내주지 않도록 민관이 힘을 모아 산업 AI를 확산하기 위해 총력을 다해야 한다”고 강조했다.

장영재 KAIST 산업 및 시스템공학과 교수(다임리서치 대표)는 “AI는 늦었지만, 산업 AI, 제조 AI에는 아직 기회가 있다”며 “자율제조의 핵심기술은 AI·로봇·디지털트윈이며 특히, AI 기술이 급격히 고도화되는 상황”이라고 말했다. 장 교수는 “기존에는 로봇의 운영 경로를 사람이 일일이 설정했지만, 지금은 AI가 스스로 최적 경로를 학습하고 조정하는 수준까지 발전했다”며 “이러한 상황에서 우리나라가 산업의 경쟁우위를 확보하려면 우리 제조 현장을 AI 활용의 대규모 테스트베드로 활용해야 한다”고 강조했다. 이어 “기술·투자 역량이 있는 대기업과 달리 중견·중소기업에는 AI 도입에 필요한 인프라·기술 등 정부 지원이 필요하다”고 덧붙였다.

허영신 마키나락스 부사장은 “범용 AI 관련 기술이 빠르게 발전하고 있으나 이 기술만으로는 현장의 문제를 해결할 수 없고, 이러한 범용 기술을 어떻게 산업 특화 솔루션으로 빠르고 비용 효율적으로 전환하는지가 중요하다”고 말했다. 허 부사장은 “AI 산업 활성화하는 데 중요한 것은 실제 활용도를 높이는 것”이라며 “정부 차원에서 다수 기업이 활용할 수 있는 산업 특화 AI 상용화 지원이 필요하다”고 강조했다.

엄재홍 DN솔루션즈 상무는 “기계·장비의 경우 기존 거대언어모델(LLM)을 곧바로 활용하기는 어렵고, 운용 생산성·가공 생산성·종합 생산성·비용 효율성을 모두 만족하는 특화 모델인 LDM(Large Domain model)이 필요하다”고 말했다. 이어 “산업에 AI를 적용하려면 산업 인프라·생태계 전반에 변화가 동반돼야 하지만 산업데이터는 지식재산권과 직결돼 공유가 어렵고, AI 등 기술역량을 보유한 인력이 부족하다”고 지적했다. 엄 상무는 “산업 AI의 시너지는 산업데이터의 상호 운용성을 바탕으로 하기 때문에 국가 거버넌스 중심의 표준화와 활용 가이드라인이 필요하다”며 “구체적인 산업데이터 활용 가이드라인으로 산업계 참여를 유도하고, 산업 AI 협업 생태계를 구축해 나갈 필요가 있다”고 덧붙였다.

산업부는 AI를 통해 산업 현장의 구체적 문제를 해결해야 하는 만큼, 선도 프로젝트를 발굴해 성공사례를 산업 전반으로 확산하고 산업데이터 생성·활용과 산업 현장에 익숙한 AI 인재 양성, 제조기업과 AI 기업이 함께하는 생태계 구축 등을 위해 범용 AI와는 차별화한 전략을 세운다는 계획이다.

산업부는 우선 AI 접목을 통해 제조공정과 제품의 혁신을 가져올 자율제조 선도프로젝트를 올해 30여 개 추가로 선정하고 디자인·유통·에너지 등 생산활동 지원을 위한 제조지원 선도프로젝트도 추진한다.

또 AI 모델 구축에 필수적인 산업데이터 생성·가공·활용을 촉진하기 위해 산업데이터 전처리·표준화 기술개발과 공유플랫폼(데이터 스페이스) 구축을 지원할 계획이다.

산업 AI 수요기업과 공급기업이 협업해 업종별 특성에 맞는 산업 AI 모델을 개발하고 현장에 실제 적용할 수 있도록 업종·지역 단위 산업 AI 혁신 인프라도 조성한다.

제조 분야 지식·노하우와 AI 역량을 모두 보유한 현장 맞춤형 AI 전문가를 육성하기 위해 산업 AI 석·박사 과정을 강화하고 주력·첨단산업 분야 재직자에 AI 활용 교육을 집중한다.

시장예측, 공급망·구매, 공정 최적화, 생산설계, 예지보전 등 산업현장 문제를 해결하기 위한 산업 AI 에이전트도 개발한다. 물리세계와 상호 작용하는 피지컬 AI 구현을 위해 K-휴머노이드 연합을 중심으로 휴머노이드 로봇 개발을 본격화하고 자율주행 자동차·선박·드론 등 모빌리티에 AI 도입을 지원한다.

수요-공급기업 간 매칭을 통해 산업 AI 도입 성공 우수사례를 널리 확산하고 선도사례를 전수할 수 있도록, 산업 AI 성공사례 인벤토리를 고도화하고 제1회 산업 AI 엑스포를 개최할 계획이다.

이승열 산업부 산업정책실장은 “우리 산업이 직면한 생산가능인구 감소, 생산성 정체 문제와 함께 최근 관세전쟁으로 인해 글로벌 공급망이 더욱 불안정해진 상황에서 산업부는 산업 경쟁력을 획기적으로 높일 수 있는 해법으로 ‘산업 AI 전략’에 주목하고 있다”고 밝혔다. 이 실장은 이어 “초기 원천기술 개발에서는 뒤처지더라도 창조적 응용·수요자 맞춤형 최적화에 강한 우리 산업계의 실력을 발휘할 때”라며 “기업이 실제 필요로 하는 산업 특화 AI 모델과 산업 AI 에이전트를 구축해 산업 현장을 지능화·자율화하는 것이 중요하다”고 강조했다.

0 Comments
제목
Category
접속자 통계
  • 현재 접속자 44 명
  • 오늘 방문자 461 명
  • 어제 방문자 1,288 명
  • 전체 방문자 253,046 명
  • 전체 게시물 5,950 개
  • 전체 댓글수 674 개
  • 전체 회원수 57 명
Facebook Twitter GooglePlus KakaoStory KakaoTalk NaverBand